This documentation describes a release under development. Documentation for the latest release, 3.6.2, can be found here.
Microsoft Azure SQL¶
Microsoft Azure SQL can either be used as a data source or a data destination in Mitto.

Source plugin example: Query
Destination plugin examples: CSV, Salesforce, SQL
Microsoft Azure SQL as a data destination¶
Mitto automatically creates the Microsoft Azure SQL database schema if it doesn’t exist
Mitto automatically creates the Microsoft Azure SQL database tables if they don’t exist
Mitto automatically determines data types for Microsoft Azure SQL columns
Mitto automatically adds new columns to Microsoft Azure SQL tables based new fields in source systems
Mitto automatically adjusts Microsoft Azure SQL tables based on changes in source data
Microsoft Azure SQL specific setup¶
Below is the database url structure for connecting to an Microsoft Azure SQL database:
mssql+pyodbc://<username>:<password>@<hostname>/<database>?<parameters>
Note
Microsoft Azure SQL requires a parameter for the Microsoft Azure SQL driver. Typically this is ?driver=ODBC+Driver+17+for+SQL+Server.
Here’s an example of using an Microsoft Azure SQL database as a destination in a CSV job:

Note
When outputting to a Microsoft Azure SQL database, leaving the ‘Schema’ blank will create a table in the dbo schema.*
SQL¶
Mitto can send SQL statements to a Microsoft Azure SQL database. Use Microsoft Azure SQL syntax in these Mitto SQL jobs.